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ABSTRACT

Photos are commonly falsified by compositing two or more
people into a single image. We describe how such compos-
ites can be detected by estimating a camera’s intrinsic param-
eters. Differences in these parameters across the image are
then used as evidence of tampering. Expanding on earlier
work, this approach is more applicable to low-resolution im-
ages, but requires a reference image of each person in the
photo as they are directly facing the camera. When consid-
ering composites of famous people, such a reference photo is
easily obtained from an on-line image search.

Index Terms— Digital Image Forensics

1. INTRODUCTION

When Star magazine was unable to obtain a highly coveted
photo of then rumored sweethearts Brad Pitt and Angelina
Jolie, they simply created their own. The resulting magazine
cover was created by compositing two separate photos of Pitt
and Jolie to give the impression that they were together. Pre-
vious work has shown how to detect such composites using
various geometric techniques. In [6], the authors described
how a re-projection of a video or image causes a distortion
in the camera skew. In [7], the authors detect inconsisten-
cies in the inter-image transform from a pair of images of the
same scene taken from different vantage points. In the most
closely related work, the authors in [3] showed how photo
compositing can change the principal point (the projection of
the camera center onto the image plane). For each person in
the image, the transformation from world to image coordi-
nates was estimated, from which the principal point could be
determined. Inconsistencies in the estimated principal point
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were then used as evidence of tampering. The primary draw-
back of this approach is that the world to image transforma-
tion was computed from the image of a person’s eyes which
are difficult to resolve in low resolution images.

Here we describe a variant of this earlier work that does
not require resolving a person’s eye. This approach relies on
a set of co-planar facial features (e.g., the corners of the eyes,
the base of the nose, the chin, etc.) which are easier to resolve
in low-resolution images. The disadvantage of this approach
is that it requires a reference image of the person as they are
directly facing the camera. While this may not be practical in
the most general sense, it is useful when analyzing photos of
famous people, for which a reference photo is easily obtained
from an on-line image search, or for any person or object for
which a reference photo is available.

2. METHODS

Image formation can be modeled by an extrinsic rigid-body
transformation from 3-D world to 3-D camera coordinates,
and an intrinsic perspective projection from 3-D camera to
2-D image coordinates. The intrinsic transformation is de-
scribed by two primary parameters: the camera focal length
and principal point. Compositing two people into a single
photo can lead to differences in these parameters.

In general, estimating a camera’s intrinsic parameters re-
quires multiple images from different vantage points, or an
image of a 3-D object with known geometry (e.g., a cube) [2,
4]. In a forensic setting, neither of these options are rea-
sonable. We will show how to estimate a camera’s intrinsic
parameters from facial features. To do so, we make several
assumptions: (1) four or more co-planar features can be lo-
calized on the face; (2) a reference image is available which
shows the selected features as they are directly facing the
camera; and (3) the camera focal length is known (the focal
length can easily be computed from image EXIF data).

2.1. Planar homography

The mapping between points in 3-D world coordinates to 2-D
image coordinates can be expressed by the projective imaging
equation ~x = P ~X , where the 3 × 4 matrix P embodies the



projective transform, the vector ~X is a 3-D world point in ho-
mogeneous coordinates, and the vector ~x is a 2-D image point
also in homogeneous coordinates. We consider a special case
of this projective transform where all of the world points ~X
lie on a single plane. In this case, the projective transform P
reduces to a 3× 3 planar projective transform H , also known
as a homography:

~x = H ~X, (1)

where the world ~X and image points ~x are now represented
by 2-D homogeneous vectors.

The planar homography H can be factored into a product
of two matrices:

H = λKM (2)

where λ is a scale factor, K is the intrinsic matrix, and M
is the extrinsic matrix. The intrinsic matrix is embodied by
four parameters: the focal length f , aspect ratio α, skew s,
and principal point (c1, c2). In modern day cameras, we can
generally assume square pixels (α = 1 and s = 0). With these
assumptions, the intrinsic matrix takes the following form:

K =

f 0 c1

0 f c2

0 0 1

 , (3)

The 3 × 3 extrinsic matrix M embodies the transformation
from world to camera coordinates:

M =
(
~r1 ~r2 ~t

)
, (4)

where ~r1 and ~r2 are the first two columns of the 3×3 rotation
matrix1, and ~t is a 3 × 1 translation vector, which combined,
define the world to camera transformation.

2.2. Homography estimation

We briefly review how to estimate the planar homography H ,
Equation(1), from known world and image coordinates [2].
This estimation begins with a cross production formulation of
Equation(1):

~x× [H ~X] = 0x1

x2

x3

×

h1 h2 h3

h4 h5 h6

h7 h8 h9

 X1

X2

X3

 = 0. (5)

This constraint is linear in the unknown elements of the ho-
mography hi. A matched set of world ~X and image ~x coor-
dinates appears to provide three constraints on the eight un-
known elements of H (the homography is defined up to an
unknown scale factor, reducing the number of unknowns from

1The third column of the rotation matrix is given by the cross product of
the first two columns: ~r3 = ~r1 × ~r2

nine to eight). However, the constraints are not linearly inde-
pendent. As such, this system provides only two constraints
in the eight unknowns. Therefore, a total of four or more
points with known world and image coordinates are required
to estimate the homography2. From these points, standard
least-squares techniques [2] can be used to solve for ~h.

Since we are assuming that the world points ~X lie on a
plane, their coordinates can be determined from a single im-
age where the planar surface is coplanar with the camera sen-
sor.

2.3. Homography factorization

Given the estimated planar homography H , we next factor
H into a product of intrinsic and extrinsic matrices. More
specifically, we are interested in the intrinsic camera parame-
ters (the principal point (c1, c2)).

Recall that the homography can be expressed as a product
of intrinsic and extrinsic matrices:

H = λK
(
~r1 ~r2 ~t

)
. (6)

The camera’s intrinsic components can be estimated by de-
composing H according to Equation (6). It is straightforward
to show that ~r1 = 1

λK−1~h1 and ~r2 = 1
λK−1~h2 where ~h1 and

~h2 are the first two columns of the matrix H . The constraint
that ~r1 and ~r2 are orthogonal (they are columns of a rotation
matrix) and have the same norm (unknown due to the scale
factor λ) yields two constraints on the unknown matrix K:

~rT
1 ~r2 = 0

~hT
1 (K−T K−1)~h2 = 0, (7)

and
~rT
1 ~r1 − ~rT

2 ~r2 = 0
~hT

1 (K−T K−1)~h1 − ~hT
2 (K−T K−1)~h2 = 0. (8)

With only two constraints, it is possible to estimate the prin-
cipal point (c1, c2) or the focal length f , but not both [8]. As
such, we will assume a known focal length.

For notational simplicity we solve for the components of
Q = K−T K−1, which contain the desired coordinates of the
principal point and the assumed known focal length:

Q =
1
f2

 1 0 −c1

0 1 −c2

−c1 −c2 c2
1 + c2

2 + f2

 . (9)

In terms of Q, the first constraint, Equation (7), takes the
form:

h1h2 + h4h5 − (h2h7 + h1h8)c1 − (h5h7 + h4h8)c2

+h7h8(c2
1 + c2

2 + f2) = 0, (10)
2The 3-D world and 2-D image coordinates should be translated so that

their centroid is at the origin, and scaled isotropically so that the average
distance to the origin is

√
2. This normalization improves stability of the

homography estimation in the presence of noise [1].



Note that this constraint is a second-order polynomial in the
coordinates of the principal point, which can be factored as
follows:

(c1 − α1)2 + (c2 − β1)2 = γ2
1 , (11)

where:

α1 = (h2h7 + h1h8)/(2h7h8),
β1 = (h5h7 + h4h8)/(2h7h8),
γ2
1 = α2

1 + β2
1 − f2 − (h1h2 + h4h5)/(h7h8).

Similarly, the second constraint, Equation (8), takes the form:

h2
1 + h2

4 + 2(h2h8 − h1h7)c1 + 2(h5h8 − h4h7)c2

−h2
2 − h2

5 + (h2
7 − h2

8)(c
2
1 + c2

2 + f2) = 0, (12)

or,

(c1 − α2)2 + (c2 − β2)2 = γ2
2 , (13)

where:

α2 = (h1h7 − h2h8)/(h2
7 − h2

8),
β2 = (h4h7 − h5h8)/(h2

7 − h2
8),

γ2
2 = α2

2 + β2
2 − (h2

1 + h2
4 − h2

2 − h2
5)/(h2

7 − h2
8)− f2.

Both constraints, Equations (11) and (13) are circles in the
desired coordinates of the principal point c1 and c2, and the
solution is the intersection of the two circles.

For certain homographies this solution can be numerically
unstable. For example, if h7 ≈ 0 or h8 ≈ 0, the first con-
straint becomes numerically unstable. Similarly, if h7 ≈ h8,
the second constraint becomes unstable. In order to avoid
these instabilities, an error function with a regularization term
is introduced. We start with the following error function to be
minimized:

E(c1, c2) = g1(c1, c2)2 + g2(c1, c2)2, (14)

where g1(c1, c2) and g2(c1, c2) are the constraints on the prin-
cipal point given in Equations (10) and (12), respectively. To
avoid numerical instabilities, a regularization term is added to
penalize deviations of the principal point from the image cen-
ter (0, 0) (in normalized coordinates). This augmented error
function takes the form:

E(c1, c2) = g1(c1, c2)2 + g2(c1, c2)2 + ∆(c2
1 + c2

2), (15)

where ∆ is a scalar weighting factor. This error function is a
nonlinear least-squares problem, which can be minimized us-
ing a Levenberg-Marquardt iteration. The image center (0, 0)
is used as the initial condition for the iteration.

Note that if there is no relative rotation between the world
and camera coordinate systems, then there is an inherent am-
biguity between the world to camera translation in X and Y
and the position of the principal point, and between the trans-
lation in Z (depth) and the focal length. As such, the fac-
torization of the homography is not unique in the case of a
fronto-parallel view of a face.

2.4. Photo Compositing

When creating a photo composite it is often necessary to
translate, scale, rotate, etc. portions of an image. Such
image-based manipulations can change the effective intrinsic
camera parameters. Therefore, differences in these estimated
parameters can be used as evidence of tampering. As we
showed in [3], a translation in the image is equivalent to
translating the camera’s principal point. In homogeneous
coordinates, translation is represented by multiplication with
a matrix T : ~y = T~x. With a horizontal and vertical transla-
tion in the image of (d1, d2), the mapping from world ~X to
(translated) image coordinates ~y is:

~y = TH ~X

= λTKM ~X

= λ

1 0 d1

0 1 d2

0 0 1

 f 0 c1

0 f c2

0 0 1

 M ~X

= λ

f 0 c1 + d1

0 f c2 + d2

0 0 1

 M ~X. (16)

That is, translation in the image is equivalent to translating
the principal point. Similarly, other image-based transforma-
tions such as scaling can affect the camera intrinsic matrix
parameters. As such, these transformations can be detected
by estimating the principal point for different faces/objects in
an image, from which any inconsistencies can be used as evi-
dence of tampering.

3. RESULTS

We describe a set of simulations that demonstrate the effi-
cacy of the proposed technique. In each case, the principal
point is estimated as follows. A set of nine planar world
coordinates are first specified. The world to camera rota-
tion ~φ =

(
φx φy φz

)
is randomly selected, where each

rotation angle does not exceed ±30◦, ±30◦ and ±15◦, re-
spectively, and where the combined rotation is at least 10◦

(i.e., ‖~φ‖ ≥ 10). The world to camera translation ~t is se-
lected randomly so that the world points project in their en-
tirety onto a sensor of size 2×2 units (centered at (0, 0)), and
such that the image of these points occupies 20% of the sen-
sor width. The rotation and translation combine to yield the
extrinsic matrix, Equation (4). The intrinsic and extrinsic ma-
trices define the transformation H , Equation (2), from world
~X to image ~x coordinates, ~x = H ~X .

As described in Section 2.2, the homography H is es-
timated from corresponding world and image coordinates.
Factoring this estimated homography requires the minimiza-
tion of the error function E(c1, c2) defined in Equation (15),
where ∆ = 0.1.



noise mean ‖~c‖ std. dev. ‖~c‖ ‖~c‖ ≤ 0.1 ‖~c‖ ≤ 0.2

0.5 0.013 0.007 100.00 100.00
1.0 0.027 0.016 100.00 100.00
2.0 0.056 0.029 91.67 100.00
3.0 0.083 0.043 66.22 99.51
4.0 0.109 0.053 46.50 94.64
5.0 0.134 0.064 32.80 85.90

Table 1. Shown are the mean and standard deviation for the
estimated principal point norms averaged over 10, 000 ran-
dom images. The actual principal point was ~c = (0 0). Each
row corresponds to different amounts of additive image noise
(in pixels). The last two columns give the percentage of esti-
mates whose magnitude are 0.1 and 0.2 units from the origin.

3.1. Simulations

In the first set of simulations, the 3-D world points consisted
of 9 planar points in the shape of a 3 × 3 square grid. The
intrinsic matrix K, Equation (3), consisted of a focal length
f = 3.5 and a principal point c1 = c2 = 0 (the image center).
With this configuration, the principal point was estimated as
described above. This entire process was repeated 10, 000
times. In order to simulate real-world conditions, the equiv-
alent of 0.5 to 5.0 pixels of noise were added to the image
coordinates. Shown in Table 1 are the mean and standard de-
viation for the estimated principal point norms, as well as the
percentage of estimates that fell within varying distances to
the origin. With small amounts of noise, the estimated princi-
pal points are highly accurate. Even with as much as 3 pixels
of noise, nearly all estimates fall within a radius of 0.2 units
from the origin.

In the second set of simulations, the intrinsic matrix K
consisted of a focal length f = 3.5 and a principal point
c1 = c2 = 0.5. With 2 pixels of noise, and averaged over
10, 000 random trials, the mean estimated principal point was
(0.336, 0.333) with a standard deviation of (0.069, 0.068).
The bias in the mean is due to the regularization term in Equa-
tion (15).

3.2. Simulations: forensics

In a forensic setting, we seek to determine if two faces in an
image are consistent with a single intrinsic matrix. In this sec-
ond set of simulations, images were generated with two sets
of planar points (as described above). In one case the intrin-
sic matrix consisted of a focal length f = 3.5 and a principal
point c1 = c2 = 0, and in the other case f = 3.5 and c1,
c2 were selected randomly such that their norm was greater
than 0.2. Two pixels of noise were added to the image coor-
dinates. Shown in Fig. 1 are the estimated principal points
from 10, 000 random trials, where the central black points

Fig. 1. Estimates of the principal point in normalized coordi-
nates. The central black dots correspond to a principal point
c1 = c2 = 0, and the gray dots correspond to principal points
with magnitude greater than 0.2. The red circle is drawn at
0.2 units from the origin for reference.

(authentic) correspond to c1 = c2 = 0, and the gray points
(inauthentic) correspond to principal points whose magnitude
was greater than 0.2. With 100% of the “authentic” princi-
pal points having a magnitude less than 0.2, 99.01% of the
“inauthentic” principal points had a magnitude greater than
0.2. With 4 pixels of noise, 94.27% of the authentic principal
points had a magnitude less than 0.2, and 99.85% of the in-
authentic points had a magnitude greater than 0.2. Even with
relatively large amounts of noise, the false positive rate and
detection accuracy are quite good. The false positive rate and
detection accuracy can be controlled by adjusting the thresh-
old on the expected difference in the principal point across an
image.

3.3. Faces

Shown in Fig. 2 is a computer generated head rendered using
the pbrt environment [5]. The virtual camera had a princi-
pal point of c1 = c2 = 0, a focal length3 of f = 3.5mm on a
3×2 mm2 sensor, and the image was rendered at a resolution
of 3000×2000 pixels. Because this synthetic face was largely
featureless, we texture-mapped the head with three “freckles”
which were then used as feature points. Eight other images
of this head were rendered by translating the head vertically
and/or horizontally and rotating about the vertical and/or hor-
izontal axis by 20◦. In each of these eight images, the corre-
sponding features were selected manually, from which H was
estimated and factored to determine the principal point. For

3The focal length f in mm is converted to normalized units as follows.
Denote the image dimensions in pixels as Nx and Ny , the sensor size in
mm as Sx and Sy . The conversion from mm to pixels is p = (Nx/Sx +
Ny/Sy)/2. The normalized focal length is pf/(max(Nx, Ny)/2).



Fig. 2. A frontal-parallel face with seven feature points (yel-
low arrows).

the eight images, the estimated principal point norms were
0.01, 0.13, 0.18, 0.05, 0.06, 0.03, 0.09, and 0.07. With an av-
erage norm of 0.087, these estimates are well below our 0.2
threshold.

To simulate tampering, the head was translated to various
locations and the principal point was estimated at each loca-
tion. Shown in Fig. 3 are level curves denoting the deviation
of the estimated principal point from the origin as a function
of spatial position in the image. The inner curve denotes a
distance of 0.2, and each subsequent curve denotes an incre-
ment of 0.1. With a threshold of 0.2, translations of the head
outside of the inner-most curve can be detected as fake.

4. DISCUSSION

When creating a composite of two or more people it is often
necessary to move a person in the image relative to their po-
sition in the original image. We have shown that this manip-
ulation can be revealed by measuring inconsistencies in the
camera principal point estimated from each person (or ob-
ject). For each face, this technique estimates the world to
image transformation from corresponding features on a ref-
erence image of the person directly facing the camera. This
transformation is then factored to yield the desired principal
point.

The major sensitivity with this technique is in localizing
a sufficient number of feature points on the face. We are cur-
rently developing a method for automatic feature extraction
that should improve the reliability of this technique. In ad-
dition, this technique could be used in conjunction with our
earlier work that estimated the camera principal point from
the image of a person’s eye [3].

Fig. 3. The level curves show the deviation of the estimated
principal point from the origin as a function of spatial position
in the image. The values on the curve denote the principal
point magnitude.
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